1. اس فورم پر جواب بھیجنے کے لیے آپ کا صارف بننا ضروری ہے۔ اگر آپ ہماری اردو کے صارف ہیں تو لاگ ان کریں۔

جنسی جذبہ

'میڈیکل سائنس' میں موضوعات آغاز کردہ از AMERICAN, ‏13 اکتوبر 2006۔

موضوع کا سٹیٹس:
مزید جوابات پوسٹ نہیں کیے جا سکتے ہیں۔
  1. AMERICAN
    آف لائن

    AMERICAN ممبر

    شمولیت:
    ‏13 اکتوبر 2006
    پیغامات:
    9
    موصول پسندیدگیاں:
    1
    پیارے دوستو! اسلام علیکم

    ہر انسان کے اندر خدا نے ایک طاقت پیدا کی ہے جس کو جنسی جذبہ کا نام دیا جاتا ہے۔ اس طاقت کے متعلق میرے پاس جو واضح نظریہ موجود ہے وہ صرف ابھی تک یہی ہے کہ اس کے ذریعے انسان کی نسل چلتی ہے۔
    لیکن میں نے اس طاقت یا جذبہ کے متعلق کچھ اور بھی پڑھا ہے۔لیکن میں ان باتوں کو سمجھ نہیں سکا۔ سوال یہ ہے کہ یہ تو بہت واضح ہے کہ اس طاقت یا جذبہ کے ذریعے انسان اپنی نسل کو آگے چلاتا ہے لیکن یہ کیسے ممکن ہوتا ہے کہ ایک انسان کے اندر
    اس طاقت یا جذبہ کے ذریعے جسمانی طاقت پیدا ہوتی ہے۔یہ جنسی طاقت کیسے پیدا ہوتی ہے؟
    دوسری بات یہ کہ
    یہ کیسے ایک بندے کے اندر ذہنی ارتکاز۔ یکسوئی پیدا کرتی ہے۔اس جذبہ کے ذریعے ذہنی ارتکاز کیسےممکن ہوتا ہے؟
    تیسری بات یہ کہ جس کا آپ نے جواب ڈھونڈنا ہے کہ
    یہ کیسے ممکن ہے کہ ایک بندہ اپنے جنسی جذبہ کو کم از کم دو ماہ تک کنٹرول کر سکے؟
    الحمداللہ میں ایک مسلمان ہوں۔ ہو سکتا ہے کہ کئی دوست مجھے سب سے پہلا مشورہ یہ دیں کہ میں روزے رکھوں۔ اس سلسلےمیں میں یہ بتا دوں کے روزے کے ذریعے جنسی جذبہ کنٹرول نہیں ہو سکا۔
    اب میں اپنی بات کو یہاں سمیٹوں گا کہ آپ ان تمام باتوں کا جواب تلاش کریں اگر آپ کے پاس ان باتوں کا جواب ہے تو تب بھی آپ یہاں ضرور اپنی معلومات شیئر کریں۔
    والسلام
    آپ کا دوست
     
  2. ساتھی
    آف لائن

    ساتھی ممبر

    شمولیت:
    ‏27 مئی 2006
    پیغامات:
    245
    موصول پسندیدگیاں:
    0
    پانچ وقت کی نماز قائم کرنے اور ہر وقت با وضو رہنے کی کوشش سے ایسا ہو سکتا ہے آزمائش شرط ہے
    بے شک نماز بے حیائی اور برے کاموں سے روکتی ہے​
     
  3. دوست
    آف لائن

    دوست ممبر

    شمولیت:
    ‏27 مئی 2006
    پیغامات:
    79
    موصول پسندیدگیاں:
    0
    مصالحے دار اور چٹپٹ غذائیں خصوصًا لال مرچ کھانے سے احتراز کریں یہ جذبات میں برانگیختی پیدا کردیتی ہیں۔ نظروں کو کنٹرول کریں۔ نماز پڑھنے کے باوجود اگر آپ آج کل کی لوفر انڈین پاکستانی فلمیں بھی دیکھیں گے تو نماز بےبس ہوگی برائی اور بے حیائی روکنے میں۔
     
  4. AMERICAN
    آف لائن

    AMERICAN ممبر

    شمولیت:
    ‏13 اکتوبر 2006
    پیغامات:
    9
    موصول پسندیدگیاں:
    1
    مناسب

    آپ دونوں دوستوں نے حقیقت میں ساتھی اور دوست ہونے کا مطلب واضح کیا ہے۔ بہت شکریہ
    اگر آپ میری پوری لڑی کو باغور پڑھتے تو آپ کا اظہار خیال کے لیے کچھ اور بھی موضوعات ملتے ۔میں ہماری اردو پیاری اردو کے باقی دوستوں سے گذارش کروں گا کہ وہ اس لڑی کو مکمل طور پر پڑھ کر اس میں موجود سوالات کے جواب دیں۔ جن کے لیے میں نے خاص طور پر یہ لڑی بنائی ہے۔

    والسلام
     
  5. دوست
    آف لائن

    دوست ممبر

    شمولیت:
    ‏27 مئی 2006
    پیغامات:
    79
    موصول پسندیدگیاں:
    0
    جس چیز سے آپ متاثر لگتے ہیں وہ یا تو یوگا کے اصول ہیں یا پھر کسی عامل ٹائپ بندے کے خیالات۔ ارتکاز پیدا کرنا، جنسی جذبہ کس طرح طاقت پیدا کرتا ہے انھیں شعبوں میں کام آتا ہے۔ یوگیوں کا کہنا ہے کہ اسے کنٹرول کرکے بندہ کنڈلینی شکتی کو بیدار کرلیتا ہے۔ اور عملیات کے دوران بھی جلالی اور جمالی پرہیز بتائے جاتے ہیں یعنی دوران عمل نا تو گوشت لہسن پیاز حیوانی چکنائی کھانی ہے نہ ہی بیوی کے قریب جانا ہے۔
    یہ انھی لوگوں کی باتیں ہیں عام زندگی میں ان کا اطلاق کم ہی ہوتا ہے۔
    جہاں تک آپ کا سوال کہ یہ کیسے پیدا ہوتا ہے تو یہ ہماری فطرت ہے۔ صحیح جواب کوئی ڈاکٹر صاحب ہی دے سکتے ہیں لیکن مجھے جہاں تک معلوم ہوا ہے کوئی پندرہ بیس دن کا ایک پراسس ہے جس میں آپ کے جسم میں (مردانہ) تولیدی مادہ تیار ہوتا ہے۔ اس کے بعد اگر اسے ایک خاص مدت (کتنی ہے کہہ نہیں سکتا) تک اس کا اخراج نہ ہو تو آپ کو قربت کی ضرورت محسوس ہوتی ہے۔ نہ ہونے کی صورت میں نارملی( قریبًا ایک ماہ میں ایک بار) رات احتلام ہوجاتا ہے۔ یہ آغاز شباب اور جوانی کے دور میں ہوتا ہے۔ وقت کے ساتھ ساتھ یہ بھی ماند پڑتا چلا جاتا ہے۔
    یہ صرف ایک نارمل نوجوان کی کیفیات بتائی گئی ہیں جتنی میرے علم میں تھیں۔ جیسا کہ میرے پچھلے پیغام سے ظاہر ہے کہ خلاف فطرت اعمال کی صورت میں اس سے الگ معمول بھی بن سکتا ہے۔ کوئی ڈاکٹر یا حکیم صاحب ہوں تو اس سلسلے میں مزید بہتر رہنمائی کرسکتے ہیں۔ میں اگر کہیں غلط ہوں تو تصحیح فرما دیں۔ یہ معلومات نیک نیتی اور صرف اور صرف علم میں اضافے کے پیش نظر انتہائی خلوص نیت سے فراہم کی گئی ہیں۔
    وسلام[/i]
     
  6. نعیم
    آف لائن

    نعیم مشیر

    شمولیت:
    ‏30 اگست 2006
    پیغامات:
    58,107
    موصول پسندیدگیاں:
    11,153
    ملک کا جھنڈا:
    امریکن بھائی نے لکھا ہے
    حضور نبی اکرم صلی اللہ علیہ وسلم نے فرمایا “جو شخص تم میں سے عائلی ذمہ داری کا بوجھ اٹھانے کی ہمت رکھتا ہو اسے چاہیے کہ نکاح(شادی) کر لے کیونکہ یہ (عمل) نگاہ نیچی رکھنے والا اور شرمگاہ کی حفاظت کرنے والا ہے۔ اور جو شخص اس (گھربار سنبھالنے) کی طاقت نہ رکھتا ہے اسے چاہیے کہ روزہ رکھے کیونکہ روزہ اس کی شہوت کو کم کرنے والا ہوتا ہے۔“ (الحدیث)
    میرے بھائی آپ نے لکھا کہ بحمد اللہ میں مسلمان ہوں ۔ اس میں کوئی شک نہیں کہ بحمد اللہ ہم سب مسلمان ہیں لیکن مسلمان کس درجہ کے؟ برائے نام؟ صرف اس لیے کہ مسلمان کے گھر پیدا ہو گئے؟ یا نام اسلامی ہے؟ یا اسلامی معاشرے میں رہتے ہوئے کسی اور سمت جانے کی ہمت نہیں؟
    میرے بھائی اسلام کے لغوی مفہوم میں سے ایک معنیٰ اللہ کے حضور خود سپردگی Self-Submission to Allah ہے یعنی اسکے احکامات جو اس نے اپنے پیارے نبی اکرم صلی اللہ علیہ وسلم کے ذریعے سے ہم تک پہنچائے ہم ان کو سچ مان کر ان کو دل و جان سے تسلیم کر کے خود کو اللہ اور اسکے رسول صلی اللہ علیہ وسلم کے حوالے کر دیں اور اپنی زندگی کو انکے احکامات کے تحت اور تابع کر دیں تب ہم “حقیقی مسلمان“ کہلانے کے حقدار ہیں۔
    مسلمان کی یہ تعریف سمجھ لینے کے بعد اب اوپر دی گئی حدیث کو ذرا پھر سے پڑھیں اور اپنے کہے گئے فرمودات کا موازنہ بھی کریں۔ یہ ایمان ہر مسلمان کا ہونا چاہیے کہ دنیا بھر کے سائنسدان ملکر بھی اس حقیقت کا ادراک شاید نہ کرسکیں جو اللہ تعالی کے محبوب نبی پاک صلی اللہ علیہ وسلم نے فرما دیا ہے۔ لیکن جو حقائق ہمارے محبوب نبی صلی اللہ علیہ وسلم نے بیان فرمائے اس کی تصدیق آج کی سائنس بھی حرف بحرف کرتی جا رہی ہے۔ آئیے ذرا مندرجہ ذیل لنک کا مطالعہ فرمائیں تاکہ عقل پسند مادی سوچ بھی اس حقیقت سے آگاہ ہو سکے۔

    [
    quote][font=Times New Roman, serif][align=left:1bgxn4zw][align=right:1bgxn4zw][align=left]Fasting Suppresses Pulsatile Luteinizing Hormone (LH)
    Secretion and Enhances Orderliness of LH Release in
    Young but Not Older Men*
    MATTI BERGENDAHL, JOSEPH A. ALOI, ALI IRANMANESH,
    THOMAS M. MULLIGAN, AND JOHANNES D. VELDHUIS
    Departments of Pediatrics and Physiology (M.B.), University of Turku, FIN-20520 Turku, Finland; Division of
    Endocrinology (J.A.A., J.D.V.), Department of Internal Medicine, National Science Foundation Center for
    Biological Timing, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908; Endocrine
    Section Medical Service (A.I.), Salem Veterans Affairs Medical Center, Salem, Virginia 24513; and Geriatrics
    Medicine (T.M.M.), Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
    ABSTRACT
    Pulsatile gonadotropin secretion and sex-steroid concentrations are
    suppressed reversibly in young fasted or malnourished human subjects.
    In this study, we investigated the impact of age on the dynamic neuroendocrine
    mechanisms underlying this stress response in healthy
    young (age, 28 6 3 yr, n 5 8) vs. older (age 67 6 2 yr, n 5 8) men with
    similar body mass indices (mean, 26 6 0.6 vs. 26 6 1.3 kg/m2, respectively).
    Serum LH concentrations were measured by immunoradiometric
    assay (IRMA) in blood collected at 10-min intervals over 27 h on a
    control (fed) day and on the third day of a 3.5-day fast (water only)
    assigned in randomized order. After 24 h of basal sampling, GnRH (10
    mg iv bolus) was administered to test gonadotrope responsiveness. Cortisol,
    dehydroepiandrosterone sulfate, androstenedione, testosterone,
    FSH, GH, and PRL were measured in 24-h pooled serum as positive and
    negative control hormones. Approximate entropy was used to quantitate
    the orderliness of LH release over 24 h, and a multiple-parameter deconvolution
    method was applied to quantify pulsatile LH secretion and
    LH half-life. In the fed state, older men exhibited elevated mean (24-h
    pooled) serum FSH and cortisol concentrations compared with young
    controls but equivalent serum LH concentrations and reduced serum
    GH, free testosterone, androstenedione, and dehydroepiandrosterone
    sulfate concentrations. Fed older men also manifested a lower frequency
    and amplitude of 24-h pulsatile LH secretion, and, by approximate entropy
    calculations, a more disorderly pattern of basal LH release than
    younger individuals. Three- and one-half days of fasting evoked 40% and
    47%increases inmean(24-h) serum cortisol concentrations in young and
    older men, respectively (P , 0.01 vs. fed, but P 5 not significant for
    percentage rise in older vs. young men). Concurrently, fasting induced
    a 2.1-fold fall in the 24-h endogenous LH production rate in young men
    (fed 36 6 9.7 vs. fasted 17 6 2.0 IU/L of distribution volume/day, P ,
    0.01), but did not significantly affect the daily LH secretion rate in older
    men(fed 2764.5 vs. fasted 2163.4 IU/day). The reducedLHproduction
    rate in fasting young men was accounted for by a 1.7-fold decline in the
    mass of LH secreted per burst (fed 2.5 6 0.45 vs. fasted 1.5 6 0.16 IU/L,
    P , 0.05), whereas LH burst mass in older men remained unchanged
    (and low) during fasting. In addition, in young men, during the 3.5-day
    fast the number of computer-resolved LH secretory bursts per 24 h
    decreased (fed 1560.7 vs. fasted 1160.7, P,0.01), and the interburst
    interval increased (fed 94 6 4.2 vs. fasted 125 6 8.7 min, P , 0.05). In
    contrast, in older men in the fed state, basal LH peak frequency and
    serum free testosterone concentrations were reduced compared with
    corresponding values in young men, and did not decline further with
    fasting. Whereas the orderliness of LH release patterns increased significantly
    during fasting in the young men, the approximate entropy
    measure failed to change significantly in unfed older subjects. By cosinor
    analysis, young men showed lower 24-h mesor (mean of nyctohemeral
    rhythm of) serum LH concentrations than older volunteers during fasting.
    Moreover, young but not older men manifested preserved 24-h variations
    in LH interpulse intervals when fasting. Exogenously stimulated
    LH release (mean 3-h serum LH concentration or calculated mass of LH
    secreted) following a single iv injection of 10 mg GnRH was independent
    of age and fasting status. We conclude that the metabolic stressor of
    short-term fasting unmasks specific age-related neuroendocrine contrasts
    in the stress-responsive control of both the pulsatile and nyctohemeral
    regulation of the male hypothalamo-pituitary-gonadal-axis.
    (J Clin Endocrinol Metab 83: 1967–1975, 1998)
    Received November 21, 1997. Revision received February 12, 1998.
    Accepted February 24, 1998.
    Address all correspondence and requests for reprints to: Johannes D.
    Veldhuis, Division of Endocrinology and Metabolism, Department of
    Internal Medicine, Box 202 University of Virginia Health Sciences Center,
    Charlottesville, Virginia 22908. E-mail: JDV@Virginia.Edu.
    * This work was supported in part by NIH Grant RR-00847 to the
    Clinical Research Center of the University of Virginia; NIH Reproduction
    Research Center P30 HD 28934; Research Career Development
    Award 1-KO4-HD-00634 (to J.D.V.); 1-FO5-TWO5080 from the Fogarty
    International Center (FIC) of the NIH (to M.B.); Veterans Administration
    (VA) Merit Review Medical Research Funds (to T.M.); the Baxter Healthcare
    Corporation, Round Lake, IL (to J.D.V.); the Academy of Finland (to
    M.B.); the Yrjo¨ Jahnsson Foundation (to M.B.); the Emil Aaltonen Foundation
    (to M.B.); the University of Virginia Pratt Foundation and Academic
    Enhancement Program (to J.D.V.); and the National Science Foundation
    (NSF) Science Center in Biological Timing (to J.D.V.). The
    contents of this publication are solely the responsibility of the authors
    and do not necessarily represent the views of the VA, FIC, NIH, or NSF.
    INADEQUATEnutritional intake for any particular level of
    whole-body energy utilization alters neuroendocrine activity
    in the healthy young human, e.g. by suppressing pulsatile
    activity of the reproductive axis, and stimulating various
    components of the stress-responsive somatotropic and
    corticotropic axes (1–3). Thus, short-term nutritional deprivation
    specifically decreases serum gonadotropin and gonadal
    sex-steroid hormone concentrations, while amplifying
    GH, ACTH, and cortisol secretion. Available mechanistic
    studies in the young healthy human and experimental animals
    suggest that reduced release of hypothalamic GnRH
    plays a key role in the acute fasting-associated suppression
    of reproductive function in both the male and female (1).
    Clinical investigations in young men using repeated blood
    sampling, LH immunoradiometric assay (IRMA), and deconvolution
    analysis have shown that a 3.5-day fast elicits an
    0021-972X/98/$03.00/0 Vol. 83, No. 6
    Journal of Clinical Endocrinology and Metabolism Printed in U.S.A.
    Copyright © 1998 by The Endocrine Society
    1967
    Downloaded from jcem.endojournals.org on October 18, 2006
    approximately 50% decrease in mean (24-h) serum LH and
    free testosterone concentrations, with an attendant reduction
    in the daily LH secretion rate ascribable to two mechanisms:
    first, a fall in the apparent number of computer-resolved LH
    secretory bursts; and second, a decrease in the mass of LH
    secreted per burst (4). Recently, it has been shown that pulsatile
    iv GnRH infusions over the last 24 h of calorie withdrawal
    can completely prevent the fasting-induced decline
    in LH secretory burst mass and frequency (without altering
    the increase in serum cortisol concentrations), and restore
    serum total and free testosterone concentrations to baseline
    (fed) values (4). The ability of pulsatile GnRH infusions alone
    to overcome this form of stress-induced (in males) hypogonadism
    supports the pathophysiological hypothesis that nutrient
    withdrawal reversibly decreases output of the human
    hypothalamic GnRH pulse generator. Thus, the metabolic
    stressor of fasting in young men is a useful experimental
    model for short-term hypothalamic GnRH deficiency mediating
    hypogonadotropic hypogonadism.
    Healthy aging in men also results in changes in the LH
    pulse signal (5–13), as well as in the steroidogenic responsiveness
    of the testis to gonadotropin challenges (14). Using
    deconvolution analysis to calculate underlying gonadotropin
    secretion rates and LH half-life, we observed that LH
    secretory burst amplitude and mass decrease progressively
    with increasing age (15). The clinical relative hypogonadism
    of aging is accompanied by a decrease in serum total and free
    testosterone concentrations (16 –20). Some of these features of
    the aging GnRH-LH-testosterone axis are similar qualitatively
    to those of stress responses of the young male reproductive
    axis (above). However, whether age-related changes
    in the hypothalamic-pituitary-gonadal axis reflect undue
    susceptibility of older individuals to stress-associated inhibition
    of the reproductive axis is not known. Moreover, to our
    knowledge, there are no data available to define the relative
    impact of a metabolic stressor, such as acute nutrient withdrawal,
    on gonadotropin secretion in older vs. young men
    (14).
    In the present study, we investigated the effects of shortterm
    fasting on the hypothalamic-pituitary-Leydig cell axis
    in eight healthy young and eight older men. The metabolic
    stressor of acute fasting was used as an experimental paradigm
    to investigate the hypothesis that age alters the ability
    of the dynamic (pulsatile and nyctohemerally rhythmic) reproductive
    axis to respond to an inhibitory stressor. Selected
    other hormones were measured in 24-h serum pools as positive
    and negative controls.
    Subjects and Methods
    Clinical protocol
    Eight young and eight older healthy men [body mass indices (BMIs)
    2660.9 kg/m2, age 2863 yr, range 22–44 yr in the group of young men;
    and BMI 26 6 1.3 kg/m2, age 67 6 2 yr, range 55–73 yr in older men]
    were studied after provision of written informed consent approved by
    the Human Investigation Committee of the University of Virginia. No
    volunteer was taking medications, had undertaken transmeridian travel
    for at least 1 week, or had recent weight loss. Each had a negative
    detailed clinical history and physical examination with normal adult
    sexual maturation and testicular size, normal screening biochemical
    tests of renal, hepatic, metabolic, and hematological function, and unremarkable
    (age-adjusted) morning serum concentrations of total and
    free T4, TSH, GH, PRL, estradiol, free and total testosterone, immunoreactive
    LH and FSH, and insulin growth factor-I (IGF-1). The pulsatile
    LH data in six of the eight young controls were reported earlier (4). BMI
    (but not visceral adiposity) was matched in the two study groups.
    The volunteers were admitted to the General Clinical Research Center
    of the University of Virginia the night before blood sampling both in the
    fed state and again before 3.5 days of fasting. The fed and fasting
    admissions were assigned in randomized order at least 1 month apart.
    In both the fed and fasting studies, blood sampling was carried out at
    10-min intervals for 27 h beginning at 0800 h at least 1 h after venipuncture.
    Daytime naps were disallowed. In the 3.5-day fast, the 27-h
    blood sampling interval occupied hours 56–83 (hour zero defined as
    2400 h on the evening of admission). After blood sampling for 24 h, a
    single bolus of 10 mg GnRH was given iv to test pituitary responsiveness
    as assessed by 3 more h of 10-min blood withdrawal.
    Blood samples were allowed to clot at room temperature, centrifuged,
    and the subsequent sera frozen at2C for later assays. Subjects remained
    in a bed or chair during sampling except for ambulation to the lavatory
    as needed. In the fed state, three isocaloric meals were given per day (at
    0800, 1200, and 1730 h). During the 3.5-day fast, the volunteers received
    caffeine- and calorie-free liquids only, slept in the Clinical Research
    Center, and had urinary ketones monitored twice to four times daily to
    assess compliance with the fast. All patients had consistently positive
    urinary ketones throughout the fast. Potassium chloride (40 mmol) and
    water-soluble vitamins were administered orally daily, as described
    earlier in other studies (2, 3, 21, 22)
    Assays
    Serum LH concentrations were measured robotically in each sample
    in duplicate by a two-site IRMA (Nichols Labs., San Juan Capistrano,
    CA), as described previously (15). This assay correlates well (P , 0.001)
    with an in vitro Leydig cell LH bioassay over the range of LH concentrations
    2–50 IU/L. The median inter- and intraassay coefficients of
    variation were less than 8.5% for these studies. All 181 samples in each
    admission were assayed together. The sensitivity of the assay was 0.20
    IU/L, using the First International Reference Preparation. Serum total
    and free testosterone, FSH, estradiol, dehydroepiandrosterone-sulfate
    (DHEA-S), androstenedione, PRL, GH, IGF-1, IGF binding protein-3
    (IGFBP-3), and TSH were assayed by RIA or chemiluminescent or immunoradiometric
    assays, in a single 24-h pool of serum (50 mL aliquoted
    from each of 145 samples) (2, 3, 15, 21, 23, 24).
    Deconvolution analysis
    Deconvolution analysis is a mathematical technique applied to a
    pulsatile serum hormone concentration vs. time series to estimate subject-
    specific measures of pulsatile hormone secretion and half-life (25–
    27). The dailyLHsecretion rate was computed assuming negligible basal
    LH secretion as the product of secretory burst frequency and the mean
    mass of LH released per secretory pulse. Based on recent validation
    studies in men, deconvolution analysis was carried out at 95% joint
    statistical confidence intervals for all calculated LH secretory burst amplitudes
    with the technician blinded to the randomized order of the fed
    vs. fasted admissions. After deconvolving the entire 27-h time series of
    serum LH concentrations, statistical analysis was applied separately to
    the 24-h baseline (spontaneous pulsatile LH release) and the 3-h post-
    GnRH (stimulated) segments.
    Nyctohemeral (24-h) rhythmicity
    Diurnal rhythms of serum LH concentrations as well as computed LH
    secretory burst characteristics (mass per burst and interpulse interval)
    were appraised using cosinor analysis, as described previously (21).
    Approximate entropy (ApEn)
    ApEn is a statistic that quantitates relative orderliness or regularity
    of hormone release profiles. It complements usual pulse analysis, but
    gives information about (sub)pattern recurrence or repetition within the
    data. Pattern reproducibility is lost in tumoral hormone secretion and
    reduced in aging. Loss of feedback control also is expected to elicit more
    disorderly or irregular release patterns.
    1968 BERGENDAHL ET AL. JCE & M² 1998
    Vol 83 ² No 6
    Downloaded from jcem.endojournals.org on October 18, 2006
    ApEn comprises a family of model- and concentration-independent
    statistics for assessing the apparent process randomness or serial irregularity
    of a time series by quantifying the subpattern reproducibility not
    necessarily identified by pulse-detection algorithms (28). A particular
    ApEn statistic is a single finite nonnegative real number assigned as an
    ensemble measure to a series of hormone concentrations with larger
    ApEn values corresponding to relatively greater pattern randomness.
    Specifically, ApEn measures serial data regularity or, technically, the
    logarithmic likelihood that runs of patterns (of length m) that are similar
    (within r) remain similar on next incremental comparison. The formal
    definition of ApEn is given elsewhere (28). Two principal input parameters,
    namely m and r, are fixed to compute ApEn from vector sequences
    constructed from the observed hormone concentration profiles, where,
    m represents the window length of consecutive pattern measurements,
    and r the tolerance or threshold for testing subpattern regularity. To
    maintain scale invariance, r is typically fixed as a percentage of the total
    (between-sample) sd of each hormone time series, e.g. 20%, and m as a
    value of 1 or 2 denoting consecutive vectors of length 1 or length 2 data
    points. In the present study, given 145 measurements of LH in each 24-h
    time series, we calculated ApEn values with r 5 0.2 and m 5 1, which
    provides the more appropriate statistic for assessing subpattern reproducibility
    in data series of this size.
    Statistical analyses
    Differences between fed and fasted measures in young and older men
    were assessed after logarithmic transformation using ANOVA followed
    by Duncan’s multiple range test. Results are presented as the mean 6
    sem. Statistical significance was accepted for a P value , 0.05 or for
    nonoverlapping group 95% statistical confidence intervals (cosinor
    analysis).
    Results
    Mean serum hormone concentrations
    The 3.5-day fast in young men (n 5 8) resulted in a more
    than 2-fold decrease in the mean (24-h) serum LH concentration
    (IU/L, averaged over the 145 samples collected).
    Older men showed no significant suppression (Table 1). In
    particular, the mean (6 sem) fed vs. fasting serum LH concentrations
    were: in young men, 3.5 6 1.0 vs. 1.6 6 0.16 IU/L
    [fasting value P , 0.05 vs. young fed, and P 5 not significant
    (NS) vs. older fed]; and, in older men, 4.260.69 vs. 3.160.47
    IU/L (fasting value P , 0.01 vs. young fasting). Other measurements
    were made in 24-h serum pools. Pooled serum
    concentrations of total and free testosterone decreased, respectively,
    by 40% and 46% in fasting young men (P , 0.01)
    (Table 1). The corresponding androgen values were not
    changed by fasting in older men, despite similar statistical
    variances. Baseline (24-h pooled) serum free testosterone
    concentrations were lower, and pooled serum FSH and cortisol
    concentrations higher, in fed older vs. young men (Table
    1). Serum pooled concentrations of cortisol increased significantly
    and similarly during fasting in young and older men
    (specifically by 40% and 47%, respectively, P , 0.01 vs. fed,
    Table 1 and P 5 NS young vs. older for the percentage rises).
    Serum pooled estradiol and IGFBP-3 concentrations were
    statistically independent of age, whereas GH and DHEA-S
    levels were lower (both P,0.01) at baseline (fed) in the older
    cohort (Table 1).
    Deconvolution analysis of pulsatile LH secretion
    Illustrative 24-h profiles of serum LH concentrations,
    which were pulsatile in all subjects in both the fed and fasting
    studies, and deconvolution-resolved LH secretory rates from
    one young and one older male are depicted in Fig. 1. The
    specific quantitative changes induced by fasting in various
    pulsatile attributes ofLHsecretion, as well asLHhalf-life, are
    summarized in Table 2. Statistical analyses revealed that the
    half-duration in minutes (the duration of the calculated secretory
    event at half-maximal amplitude) of computed LH
    secretory bursts decreased, but the calculatedLHhalf-life did
    not change, significantly in response to fasting in young men.
    In older men, the LH secretory burst half-duration and LH
    half-life did not change during fasting, but both of these
    parameters were greater at baseline and during fasting than
    the corresponding values in young men. Individual half-life
    data are given in Fig. 2A. The number of LH secretory pulses
    per 24 h with statistically non-zero amplitudes (jointly at P,
    0.05) fell significantly in fasting young men. In contrast, LH
    secretory burst frequency was lower at baseline in fed older
    men, and remained unchanged during fasting (Fig. 2B). Conversely,
    the mean LH interpulse interval in young men rose
    in response to fasting. In older men, the LH interburst interval
    was not changed by fasting, and was greater in both
    fed and fasted states than corresponding values in fed young
    men. The mass of LH secreted per burst (area of the calculated
    LH secretory pulse) in young men decreased significantly during
    fasting, but this change was not evident in older men. There
    were no significant alterations in computed LH secretory burst
    amplitude (maximal rate of calculated LH secretion attained
    within a release episode) in young or older men during fasting,
    but the LH secretory pulse amplitude was lower in older men
    in both dietary states compared with fed young men.
    The product of the mass of LH secreted per burst and LH
    TABLE 1. Mean (24-h) serum hormone concentrations (pools) in fed and fasting young and older men (n 5 8 in each group)
    Hormone Young fed Young fasting Older fed Older fasting
    FSH (IU/L) 2.4 6 0.46 1.8 6 0.18 6.1 6 1.40a 4.7 6 1.0b
    Total testosterone (ng/dL) (to convert to nmol/L 3 0.0347) 581 6 70 343 6 42a 512 6 63 425 6 61
    Free testosterone (pg/mL) (to convert to pmol/L 3 3.467) 23 6 4.7 13 6 1.0a 13 6 1.0a 11 6 1.2a
    Estradiol (pg/mL) (to convert to pmol/L 3 3.671) 32 6 6.0 26 6 4.5 34 6 3.3 30 6 5.3
    Androstenedione (ng/mL) (to convert to nmol/L 3 3.49) 1.1 6 0.04 1.1 6 0.06 0.8 6 0.12b 1.0 6 0.17
    Cortisol (mg/dL) (to convert to nmol/L 3 27.6) 8.9 6 0.71 12.5 6 1.10a 11.4 6 0.59b 16.8 6 1.04c
    DHEAS (mg/mL) (to convert to mmol/L 3 2.714) 484 6 63 654 6 39 98 6 17a 130 6 31a
    GH (mg/L) 1.7 6 1.19 3.8 6 0.76a 0.4 6 0.10a 2.3 6 0.38d
    IGF-1 (mg/L) 242 6 38 221 6 45 131 6 22 97 6 17b
    IGFBP-3 (mg/L) 3249 6 273 3258 6 287 2778 6 127 2640 6 128
    LH was determined in each of 169 samples in each volunteer, with 24-h means calculated from first 145 samples (pre-GnRH injections).
    Data are mean 6 SEM, n 5 8 (ANOVA followed by Duncan’s multiple range test after logarithmic transformation).
    a P , 0.01; b P , 0.05, compared with young fed controls; c P , 0.01; d P , 0.05, compared with older fed controls.
    FASTING AND LH IN YOUNGER VS. OLDER MEN 1969
    Downloaded from jcem.endojournals.org on October 18, 2006
    secretory event frequency is the calculated 24-h pulsatile LH
    secretion rate. In young but not older men, this measure
    decreased in the fasted state.
    Calculated LH secretory burst mass and the mean (3-h)
    serum LH concentration following a single iv bolus injection
    of 10 mg GnRH were both independent of fasting or age
    (Table 3).
    Nyctohemeral rhythmicity (cosinor analysis)
    As shown in Fig. 3, A and B, young but not older men
    exhibited significant 24-h variations in individual LH secretory
    pulses mass in the fed state. Fasting reduced the mesor
    (cosine mean) and amplitude of this rhythmicity in young
    men but evoked a detectable rhythm in older men. Both
    FIG. 1. Illustrative 24-h serum LH concentration (IRMA) profiles and calculated LH secretory rates as determined by deconvolution analysis
    in one healthy young man and one older man studied in fed and fasted states. Blood samples were collected at 10-min intervals for 27 h when
    volunteers were nutritionally replete (fed) and again during last 27 h of a 3.5-day fast. Fed and fasted sessions were assigned in randomized
    order at least 4 weeks apart. GnRH (10 mg iv) was administered after first 24 h of baseline sampling. Baseline is shown over time 0–1440 min
    (A and B), and post-GNRH responses over time 1440–1640 min (C and D). Continuous curves through observed serum LH concentrations (A
    and C) are predicted by deconvolution analysis (see Subjects and Methods). Vertical bars through sample LH concentration values denote
    dose-dependent intrasample SDS (estimated from all 191 replicated samples in each original 27-h time series). Punctuated episodes of
    spontaneous LH release over 24 h or following GnRH iv (B and D) are computer-estimated LH secretory bursts (P , 0.05 vs. random sample
    variance), which give rise to pulsatile serum LH concentration profiles. Calculated mean number, duration, mass, and amplitude of LH secretory
    bursts and half-life of endogenous LH in eight young and eight older subjects each studied in both fed and fasted states are summarized in
    Table 2. Table 3 gives LH responses to iv GnRH (10 mg).
    TABLE 2. Deconvolution analysis of (24-h) pulsatile LH secretion and half-life in fed and fasting states in healthy young and older men
    (n 5 8 in each group)
    Parameter Young fed Young fasted Older fed Older fasted
    LH secretory burst (half-duration (min) 7.8 6 1.53 4.4 6 1.05b 12.4 6 1.80b 10.1 6 1.44b
    LH half-life (min) 84 6 2.8 91 6 6.0 149 6 9.7a,d 146 6 8.8a,d
    LH secretory burst frequency (events/24 h) 15 6 0.71 11 6 0.73a 12 6 0.42a 12 6 0.75a
    Interburst interval (min) 94 6 4.2 125 6 8.7b 119 6 3.9a 118 6 9.2a
    LH secretory burst mass (IU/L) 2.5 6 0.45 1.5 6 0.16b 2.3 6 0.31 1.81 6 0.23
    LH secretory burst amplitude (IU/L/min) 0.67 6 0.23 0.41 6 0.07 0.21 6 0.05b 0.22 6 0.06b
    LH production rate/24 h (IU/L distribution volume/day) 36 6 9.7 17 6 2.0b 27 6 4.5 21 6 3.4
    Data are mean 6 SEM, n 5 8 (ANOVA followed by Duncan’s multiple range test after logarithmic transformation).
    a P , 0.01; b P , 0.05, compared with young fed controls; c P , 0.05, compared with older fed controls; d P , 0.01; e P , 0.05, compared with
    young fasted.
    1970 BERGENDAHL ET AL. JCE & M² 1998
    Vol 83 ² No 6
    Downloaded from jcem.endojournals.org on October 18, 2006
    young and older men exhibited a significant 24-h variation
    in LH interpulse interval in the fed state, which was abolished
    in older men by fasting (Table 4).
    As summarized in Table 5, cosinor analysis of serum LH
    concentrations per se (rather than the above deconvolutioncalculated
    parameters) revealed significant age-related contrasts
    only in the fasting state, in which the mesor (mean)
    reached a significantly lower value in young vs. older
    volunteers.
    ApEn
    ApEn averaged 1.21 6 0.055 in fed young males, and fell
    to 0.82360.089 during fasting (P,0.01) (Fig. 4). This change
    indicates significantly greater orderliness or regularity of LH
    release (lower ApEn value) in the fasting environment. Baseline
    ApEn tended to be higher in older men at 1.43 6 0.054,
    denoting greater irregularity of LH release over 24 h, as
    observed earlier in overnight blood sampling (6). In contrast
    to young men, older men’s ApEn values remained statistically
    unchanged during fasting (1.16 6 0.074).
    Discussion
    The present investigation refutes our a priori hypothesis of
    greater vulnerability of older men to the gonadotropin-suppressing
    effects of short-term fasting. Indeed, fasting reduced
    the secretion rate of LH and the serum free testosterone
    concentration less in healthy older men. Moreover,
    fasting enhanced the orderliness of LH release patterns (as
    defined by the ApEn statistic) in young but not older men.
    In contrast, young and older men had comparable adrenalgland
    activation during fasting with, respectively, 40% and
    47% (young and older) rises in mean (24-h) serum cortisol
    concentrations. This suggests a similar adrenal stress response
    (at least fractionally in young and older individuals).
    As a positive control, both age groups showed severalfold
    increases in (24-h pooled) serum GH concentrations in response
    to fasting. Thus, the age distinction in neuroendocrine
    adaptations to fasting was quite specific to the hypothalamopituitary-
    gonadal axis.
    Using deconvolution analysis, we reported earlier that a
    3.5-day fast in young men brings about an approximately
    50% fall in the calculated 24-h LH secretion rate. This was
    neuroendocrinologically caused by a decline in both the apparent
    number of computer-resolved LH secretory bursts
    and the mass of LH secreted per burst (4). The suppressive
    effect of fasting was completely reversed by pulsatile iv infusions
    of GnRH. In the present study, we now observe that
    in healthy older men short-term fasting fails to alter significantly
    the 24-h LH production rate, LH pulse frequency, or
    the mass of LH secreted per burst. Under stringent deconvolution-
    fitting conditions of 95% joint confidence intervals,
    baseline LH secretory burst frequency and amplitude (mass)
    were both reduced at baseline in older men [the latter confirming
    an evaluation earlier by 2.5-min blood sampling
    overnight (29)], and remained low during fasting. The lower
    (baseline) serum free testosterone concentration in older men
    would tend to drive LH release (assuming normal negative
    feedback), which might have opposed the tendency of fasting
    to suppress the (older) axis.
    Older men also were distinguished by more irregular or
    disorderly patterns of 24-h LH release at baseline, reflected
    in higher ApEn values [as also described independently in
    6–8 h of overnight blood sampling (6)]. Moreover, in older
    men, fasting failed to elicit significantly more orderly (lower
    ApEn) LH release profiles, unlike the LH-gonadal-axis responses
    identified in young men under the same study
    conditions.
    The capacity of gonadotroph cells to augment secretion of
    biologically active LH during blockade of estrogen negative
    feedback is decreased in older men (30, 31). On the other
    hand, the secretion of bioactive LH in older men can be
    amplified by treatment with a nonsteroidal androgen-receptor
    antagonist (24). The latter finding indicates significantly
    preservedGnRH/LHsecretory capacity in older individuals.
    Taken together with other data, such observations allow for
    the possibility (but do not prove) that aging is marked by
    alterations in sex-hormone feedback control of the GnRHLH-
    testosterone axis (32–35). In addition, we now describe
    an apparent resistance to fasting-induced suppression of
    both pulsatileLHsecretion and circulating (free) testosterone
    concentrations in older men. This is consistent with an ageassociated
    difference in adaptation of the GnRH-LH-Leydig
    cell axis to a short-term metabolic stress. Whether this putative
    resistance to fasting stress is related to the relative
    FIG. 2. Individual LH half-life (A) and LH secretory burst frequency
    (B) values in eight young and eight older men studied in fed vs. fasting
    state for 3.5 days. Blood was sampled at 10-min intervals for 24 h and
    assayed for LH content by IRMA. Deconvolution analysis was applied
    to quantitate various LH secretory measures (Table 2) and half-life.
    Numerical values are mean 6 SEM.
    FASTING AND LH IN YOUNGER VS. OLDER MEN 1971
    Downloaded from jcem.endojournals.org on October 18, 2006
    inability of older men to increase pulsatile LH secretion during
    treatment with an opiate-receptor antagonist (specifically
    used to block opiate-dependent and hence putatively stressmediated
    inhibition of GnRH secretion) (36) is not known. In
    the rat, sex steroids significantly modulate the inhibitory
    actions of both endogenous opiates and the stress of food
    restriction on pulsatile LH release (37–39). The roles (if any)
    of other putative hypothalamo-pituitary stress modulators
    defined in the rat, such as CRH, neuropeptide Y, leptin, etc.
    (1, 40, 41), in fasting-induced hypogonadotropism in men are
    unestablished. In addition, whether and how estradiol, testosterone,
    and/or endogenous opiate pathways modulate
    fasting’s suppressive effects on GnRH secretion and/or its
    feedback control in the young or older human are not known.
    Because the type, duration, intensity, and novelty of various
    stressors may influence the magnitude and nature of the
    subsequent stress-adaptive responses, the present findings
    of age-related contrasts in GnRH/LH secretory adaptations
    to a particular metabolic-stress paradigm may or may not be
    applicable in other stress contexts.
    Fasting did not affect the calculated half-life of endogenous
    LH in either group of men, but older men had an
    apparently longer LH half-life at baseline and during fasting.
    A longer half-life in older men could be because of reduced
    LH removal, a larger LH distribution volume, altered LH
    isoforms [e.g. more acidic (14) with reduced metabolic clearance],
    and/or, on a technical basis, (unrecognized) basal LH
    secretion or a greatly skewed LH waveform (42)]. We know
    of no direct experimental data to distinguish among these
    possibilities. Even so, fasting did not change the apparent
    half-life of LH.
    As reported previously using a simplified model of purely
    pulsatile LH release (15), we found a significant prolongation
    of the computed LH secretory-burst duration in older men.
    LH secretory-burst duration also is altered in end-stage renal
    failure in men (23), and increases in estrogen-treated postmenopausal
    women (43). The intrapituitary and/or extraglandular
    mechanisms underlying a prolonged (LH) secretory
    event duration are not known. In this study, renal
    function and serum estradiol concentrations were normal
    and similar in both age groups (Table 1). On the other hand,
    the significantly lower mean serum free testosterone concentration
    in the older men could explain in part their calculated
    longer LH half-life and/or LH secretory burst duration,
    because short-term androgen deprivation with
    flutamide will induce both of these changes (44).
    Older men had more disorderly LH release than young
    individuals, as quantified by ApEn. This was reported previously
    based on overnight blood sampling every 2.5 min in
    another group of older (vs. young) men (6). In this study, via
    10-min sampling over 24-h, we found that ApEn values fall
    in young men during fasting, signifying more orderly or
    regular LH release at this time. In contrast, older men retained
    more disorderly (24-h) LH release. On mathematical
    grounds, the orderliness of hormone release is believed to
    reflect the strength and/or complexity of key feedback interactions
    within a neuroendocrine axis (6, 45). Thus, our
    observations point to reduced feedback organization within
    the older (male) hypothalamo-pituitary-Leydig cell axis at
    baseline [present data and (6)], which fails to normalize with
    fasting.
    The suppression of LH secretory burst mass (and its 24-h
    rhythmicity, Fig. 3A) in fasting young but not older men was
    not attributable to measurable differences in pituitary gonadotrope-
    cell responsiveness to GnRH injections in the two
    age groups. Indeed, 10 mg GnRH iv stimulated similar LH
    release independently of age or fasting. Recent iv GnRH
    dose-LH secretory response analyses in (fed) young and
    older men revealed enhanced maximal stimulatory effects of
    GnRH (greater stimulus efficacy) in older subjects, with similar
    half-maximal GnRH actions (similar agonist potency of,
    or pituitary sensitivity to, GnRH) across age (46). Because
    GnRH dose-LH response curves are not available in fasted
    young and older individuals, we cannot exclude unequal
    sensitivity to GnRH in fasting aged vs. young volunteers.
    Masking of results by greater visceral fat [possibly suppressive
    of LH pulse amplitude (15)] in older men also cannot be
    excluded, because volunteers were matched for BMI only.
    The older men in this study exhibited lower basal (fed)
    serum GH, androstenedione, and DHEA-S concentrations,
    and higher serum FSH and cortisol concentrations in 24-h
    serum pools as expected, indicating representativeness of
    these cohorts (14). In both older and young men, mean (24-h)
    serumGHand cortisol concentrations rose significantly with
    fasting corroborating prior data in young men and documenting
    compliance with the fast (2, 3).
    Nyctohemeral (24-h cosinor) rhythms in serum LH concentrations
    showed reduced mesor (mean) values in fasted
    young compared with older men, indicating suppressed
    overall 24-h LH release. Separate cosinor analyses of (deconvolution-
    computed) LH secretory burst mass disclosed
    loss of 24-h rhythmic variation in young fasted (but not older
    fasted) men, thus unmasking another age contrast. Both age
    groups exhibited day-night variations in (deconvolution-calculated)
    LH interburst intervals in the fed state, which were
    abolished in older (but not young) fasted individuals. Although
    the exact (presumptively neural) mechanisms that
    generate such 24-h rhythmicities within the human LH axis
    are not yet known (14), in this study we document age
    differences both basally and fasting. Our LH data comple-
    TABLE 3. Deconvolution analysis of GnRH-stimulated LH secretion over 3 h immediately following a single iv bolus injection of 10 mg
    GnRH in fed and fasting states in healthy young and older men
    LH measure Young fed Young fasted Older fed Older fasted
    LH secretory burst mass (IU/L/burst) 6.5 6 0.73 15 6 4.1 9.6 6 2.1 13 6 2.6
    3-h mean serum LH concentration (IU/L) 6.0 6 0.53 8.7 6 1.9 9.1 6 1.5 10 6 2.0
    3-h integrated LH level (IU/L 3 min) 1140 6 98 1650 6 360 1660 6 282 1870 6 360
    GnRH-stimulated LH release significantly above preinjection baseline (or 24-h mean) in all groups studied.
    Data are mean6SEM, n58/group (ANOVA followed by Duncan’s multiple range test after logarithmic transformation revealed no significant
    effects of age or dietary state on the measures shown).
    1972 BERGENDAHL ET AL. JCE & M² 1998
    Vol 83 ² No 6
    Downloaded from jcem.endojournals.org on October 18, 2006
    FIG. 3. Nyctohemeral (24-h) rhythmicity of deconvolution-calculatedLHsecretory burst mass (A) andLHinterpulse intervals (B) for all subjects
    combined in each of two groups, specifically young (n 5 8) vs. older (n 5 8) men, as assessed by cosinor analysis of deconvolution measures
    (Subjects and Methods). NS, Not significant (P , 0.05) amplitude of 24-h periodic fit. Fitted amplitudes (and 95% statistically confidence
    intervals) are noted for significant group rhythms.
    FASTING AND LH IN YOUNGER VS. OLDER MEN 1973
    Downloaded from jcem.endojournals.org on October 18, 2006
    ment an earlier report of diminished testosterone rhythmicity
    over 24 h in (fed) older men (47).
    In summary, fasting in young but not older men reduces
    24-h LH secretory burst frequency and mass and (24-h
    pooled) serum free testosterone concentrations. Fasting in
    young but not older men enhances the quantifiable orderliness
    (lower ApEn) of LH release, and alters 24-h LH rhythmicity.
    Thus, we conclude that the metabolic stress of shortterm
    fasting unmasks age-related dynamic differences in the
    pulsatile, 24-h rhythmic, and orderly release of LH.
    Acknowledgments
    We thank Patsy Craig for her skillful preparation of the manuscript;
    Paula Azimi for her data analysis, statistical assistance, and artwork;
    Brenda Grisso for performance of the immunoassays; and Sandra Jackson
    and the expert nursing staff at the University of Virginia General
    Clinical Research Center for conduct of the research protocols.
    References
    1. Bergendahl M, Veldhuis JD. 1995 Altered pulsatile gonadotropin signaling in
    nutritional deficiency in the male. Trends Endocrinol Metab. 6:145–159.
    2. Bergendahl M, Vance ML, Iranmanesh A, Thorner MO, Veldhuis JD. 1996
    Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory
    burst mass and delays the time of maximal nyctohemeral cortisol concentrations
    in healthy men. J Clin Endocrinol Metab. 81:692– 699.
    3. Hartman ML, Veldhuis JD, Johnson ML, et al. 1992 Augmented growth
    hormone (GH) secretory burst frequency and amplitude mediate enhancedGH
    secretion during a two day fast in normal men. J Clin Endocrinol Metab.
    74:757–765.
    4. Aloi JA, Bergendahl M, Iranmanesh A, Veldhuis JD. 1997 Pulsatile intravenous
    gonadotropin-releasing hormone administration averts fasting-induced
    hypogonadotropism and hypoandrogenemia in healthy, normal-weight men.
    J Clin Endocrinol Metab. 82:1543–1548.
    5. Mitchell R, Hollis S, Rothwell C, Robertson WR. 1995 Age-related changes
    in the pituitary-testicular axis in normal men; lower serum testosterone results
    from decreased bioactive LH drive. Clin Endocrinol (Oxf). 42:501–507.
    6. Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M,
    Veldhuis JD. 1996 Older males secrete luteinizing hormone and testosterone
    more irregularly, and jointly more asynchronously, than younger males: dual
    novel facets. Proc Natl Acad Sci USA. 93:14100 –14105.
    7. Pincus SM, Veldhuis JD, Mulligan T, Iranmanesh A, Evans WS. 1997 Effects
    of age on the irregularity of LH and FSH serum concentrations in women and
    men. Am J Physiol. 273:E989–E995.
    8. Mulligan T, Delemarre-van de Waal HA, Johnson ML, Veldhuis JD. 1994
    Validation of deconvolution analysis of LH secretion and half-life. Am J
    Physiol. 267:R202–R211.
    9. Baker HWG, Burger HG, DeKretser DM, et al. 1976 Changes in the pituitarytesticular
    system with age. Clin Endocrinol (Oxf). 5:349-358.
    10. Harman SM, Tsitouras PD, Costa PT, Blackman MR. 1982 Reproductive
    hormones in aging men. II. Basal pituitary gonadotropins and gonadotropin
    responses to luteinizing hormone-releasing hormone. J Clin Endocrinol Metab.
    54:547–551.
    11. Korenman SG, Morley JE, Mooradian AD, et al. 1990 Secondary hypogonadism
    in older men: its relation to impotence. J Clin Endocrinol Metab.
    71:963–969.
    12. Vermeulen A, Deslypere JP, De Meirleir K. 1989 A new look at the andropause:
    altered function of the gonadotrophs. J Steroid Biochem. 32:163–165.
    13. Bergendahl M, Evans WS, Veldhuis JD. 1996 Current concepts on ultradian
    rhythms of luteinizing hormone secretion in the human. Human Reproduction
    Update. 2:507–518.
    14. Veldhuis JD. 1991 The hypothalamic pituitary-testicular axis. In: Yen SSC,
    Jaffe RB, eds. Reproductive endocrinology. Philadelphia, PA: W.B. Saunders;
    409–459.
    15. Veldhuis JD, Urban RJ, Lizarralde G, Johnson ML, Iranmanesh A. 1992
    Attenuation of luteinizing hormone secretory burst amplitude is a proximate
    TABLE 4. Cosinor analysis of deconvolution measures in fed vs. fasting young versus older men
    Amplitude Phasea Mesorb
    LH secretory burst mass (IU/L)
    Fed young 0.50 (0.02– 0.98)c 34 (2186–261)c 2.6 (2.3–2.9)c
    Fed older NS NS 2.3 (2.0 –2.6)c
    Fasting young NS NS 1.6 (1.4 –1.9)c
    Fasting older 0.49 (0.057–0.93)c 136 (62–340)c 1.9 (1.6 –2.2)c
    LH interburst interval (min)
    Fed young 12 (3.2–21)c 292 (110–474)c 94 (87–101)c
    Fed older 11 (0.77–22)c 352 (101–620)c 119 (111–127)c
    Fasting young 21 (1.3–40)c 644 (437–836)c 114 (102–127)c
    Fasting older NS NS 115 (103–126)c
    a Acrophae, Time in min (before 0800) of the maximum of 24-h rhythm.
    b Mesor or mean of 24-h rhythm.
    c 95% group confidence interval for each parameter.
    NS, Significant amplitude, and hence no determinable phase.
    TABLE 5. Serum 24-h LH concentration profiles (not fitted
    parameters of secretion per se): cosine fits of 24-h rhythmicity
    Group Amplitude Phase Mesor
    Young fed 0.77 6 0.350 740 6 172 2.9 6 0.96
    Older fed 0.49 6 0.056 1030 6 141 3.9 6 0.66
    P NS* NS NS
    Young fasting 0.43 6 0.048 780 6 160 1.0 6 0.16
    Older fasting 0.37 6 0.054 510 6 140 2.6 6 0.41
    P NS NS P , 0.01
    Means 6 SEM of individual fits, n 5 8 young, and n 5 9 older men
    (Wilcoxon unpaired two-tailed test: NS, denotes P $ 0.05.)
    a One-half the difference between zenith and nadir values.
    b Time in minutes (before 0800 h) of maximum value in 24-h
    rhythm.
    FIG. 4. Individual ApEn values of 24-h serum LH concentration profiles
    in fed vs. fasted young (n 5 8) vs. older (n 5 8) men. ApEn is a
    relative measure of disorderliness or irregularity of hormone release,
    with higher absolute values denoting greater irregularity. Conversely,
    lower ApEn values as observed in this study in young fasted
    men indicate more orderly patterns. Data are presented as indicated
    in legend of Fig. 2.
    1974 BERGENDAHL ET AL. JCE & M² 1998
    Vol 83 ² No 6
    Downloaded from jcem.endojournals.org on October 18, 2006
    basis for the hypoandrogenism of healthy aging in men. J Clin Endocrinol
    Metab. 75:52–58.
    16. Gray A, Berlin JA, McKinlay JB, Longcope C. 1991 An examination of research
    design effects on the association of testosterone and male aging: results
    of a meta-analysis. J Clin Epidemiol. 44:671– 684.
    17. Harman SM, Tsitouras PD. 1980 Reproductive hormones in aging men. I.
    Measurement of sex steroids, basal luteinizing hormone, and Leydig cell
    response to human chorionic gonadotropin. J Clin Endocrinol Metab. 51:35-43.
    18. Nahoul K, Roger M. 1990 Age-related decline of plasma bioavailable testosterone
    in adult men. J Steroid Biochem. 35:293–299.
    19. Tenover JL. 1997 Testosterone in the aging male. J Androl. 18:103–106.
    20. Winters SJ, Troen P. 1982 Episodic luteinizing hormone (LH) secretion and the
    response of LH and follicle-stimulating hormone to LH-releasing hormone in
    aged men: evidence for coexistent primary testicular insufficiency and an
    impairment in gonadotropin secretion. J Clin Endocrinol Metab. 55:560 –565.
    21. Veldhuis JD, Iranmanesh A, Evans WS, Lizarralde G, Thorner MO, Vance
    ML. 1993 Amplitude suppression of the pulsatile mode of immunoradiometric
    LH release in fasting-induced hypoandrogenemia in normal men. J Clin Endocrinol
    Metab. 76:587–593.
    22. Ho KY, Veldhuis JD, Johnson ML, et al. 1988 Fasting enhances growth
    hormone secretion and amplifies the complex rhythms of growth hormone
    secretion in man. J Clin Invest. 81:968 –975.
    23. Veldhuis JD, Wilkowski MJ, Urban RJ, Lizarralde G, Iranmanesh A, Bolton
    WK. 1993 Evidence for attenuation of hypothalamic GnRH impulse strength
    with preservation of gonadotropin-releasing hormone (GnRH) pulse frequency
    in men with chronic renal failure. J Clin Endocrinol Metab. 76:648–654.
    24. Veldhuis JD, Urban RJ, Dufau ML. 1994 Differential responses of biologically
    active LH secretion in older vs. young men to interruption of androgen negative
    feedback. J Clin Endocrinol Metab. 79:1763–1770.
    25. Veldhuis JD, Carlson ML, Johnson ML. 1987 The pituitary gland secretes in
    bursts: appraising the nature of glandular secretory impulses by simultaneous
    multiple-parameter deconvolution of plasma hormone concentrations. Proc
    Natl Acad Sci USA. 84:7686 –7690.
    26. Johnson ML, Veldhuis JD. 1995 Evolution of deconvolution analysis as a
    hormone pulse detection method. Methods Neurosci. 28:1–24.
    27. Veldhuis JD, Johnson ML. 1995 Specific methodological approaches to selected
    contemporary issues in deconvolution analysis of pulsatile neuroendocrine
    data. Methods Neurosci. 28:25–92.
    28. Pincus SM, Keefe DL. 1992 Quantification of hormone pulsatility via an
    approximate entropy algorithm. Am J Physiol. 262:E741–E754.
    29. Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD. 1995
    Amplified nocturnal luteinizing hormone (LH) secretory burst frequency with
    selective attenuation of pulsatile (but not basal) testosterone secretion in
    healthy aged men: possible Leydig cell desensitization to endogenous LH
    signaling–a clinical research center study. J Clin Endocrinol Metab.
    80:3025–3031.
    30. Urban RJ, Veldhuis JD, Blizzard RM, Dufau ML. 1988 Attenuated release of
    biologically active luteinizing hormone in healthy aging men. J Clin Invest.
    81:1020 –1029.
    31. Reyes-Fuentes A, Veldhuis JD. 1993 Neuroendocrine physiology of the normal
    male gonadal axis. Endocrinol Metab Clin North Am. 22:93–124.
    32. Deslypere JP, Kaufman JM, Vermeulen T, Vogelaers D, Vandalem JL,
    Vermeulen A. 1987 Influence of age on pulsatile luteinizing hormone release
    and responsiveness of the gonadotrophs to sex hormone feedback in men.
    J Clin Endocrinol Metab. 64:68 –73.
    33. Vermeulen A, Deslypere JP. 1985 Long-term transdermal dihydrotestosterone
    therapy: effects on pituitary gonadal axis and plasma lipoproteins. Maturitas.
    7:281-285.
    34. Mulligan T, Iranmanesh A, Johnson ML, Straume M, Veldhuis JD. 1997
    Aging alters feedforward and feedback linkages between LH and testosterone
    in healthy men. Am J Physiol. 42:R1407–R1413.
    35. Veldhuis JD, Iranmanesh A, Samojlik E, Urban RJ. 1997 Differential sexsteroid
    negative feedback regulation of pulsatile follicle-stimulating hormone
    secretion in healthy older men: deconvolution analysis and steady state sex
    steroid hormone infusions in frequently sampled healthy older individuals.
    J Clin Endocrinol Metab. 82:1248 –1254.
    36. Vermeulen A, Deslypere JP, Kaufman JJ. 1989 Influence of antiopioids on
    luteinizing hormone pulsatility in aging men. J Clin Endocrinol Metab.
    68:68 –72.
    37. Cagampang FRA, Maeda K-I, Tsukamura H, Ohkura S, Ota K. 1991 Involvement
    of ovarian steroids and endogenous opioids in the fasting-induced suppression
    of pulsatile LH release in ovariectomized rats. J Endocrinol
    129:321–328.
    38. Bergendahl M, Huhtaniemi I. 1994 The time since castration influences the
    effects of short-term starvation on gonadotrophin secretion in male rats. J
    Endocrinol. 143:209 –219.
    39. Dong Q, Rintala H, Handelsman DJ. 1994 Androgen receptor function during
    undernutrition. J Neuroendocrinol. 6:397– 402.
    40. Allen LG, Kalra PS, Corwley WR, Kalra SP. 1985 Comparison of the effects
    of neuropeptide Y and adrenergic transmitters on LH release and food intake
    in male rats. Life Sci. 37:617– 623.
    41. Ahima RS, Prabakaran D, Mantzoros C, et al. 1996 Role of leptin in the
    neuroendocrine response to fasting. Nature. 382:250 –252.
    42. Veldhuis JD, Evans WS, Johnson ML. 1995 Complicating effects of highly
    correlated model variables on nonlinear least-squares estimates of unique
    parameter values and their statistical confidence intervals: estimating basal
    secretion and neurohormone half-life by deconvolution analysis. Methods
    Neurosci. 28:130 –138.
    43. Quyyumi SA, Pinkerton JV, Evans WS, Veldhuis JD. 1993 Estradiol amplifies
    the amount of luteinizing hormone secreted in response to increasing doses of
    gonadotropin-releasing hormone (GnRH) by specifically augmenting the duration
    of evoked LH secretory events and hence their mass. J Clin Endocrinol
    Metab. 76:594–600.
    44. Veldhuis JD, Zwart AD, Iranmanesh A. 1997 Neuroendocrine mechanisms by
    which selective Leydig-cell castration unleashes increased pulsatile LH release
    in the human: an experimental paradigm of short-term ketoconazole-induced
    hypoandrogenemia and deconvolution-estimated LH secretory enhancement.
    Am J Physiol. 272:R464–R474.
    45. Veldhuis JD, Metzger DL, Martha Jr PM, et al. 1997 Estrogen and testosterone,
    but not a non-aromatizable androgen, direct network integration of the hypothalamo-
    somatotrope (growth hormone)-insulin-like growth factor I axis in
    the human: evidence from pubertal pathophysiology and sex-steroid hormone
    replacement. J Clin Endocrinol Metab. 82:3414 –3420.
    46. Zwart AD, Urban RJ, Odell WD, Veldhuis JD. 1996 Contrasts in the gonadotropin-
    releasing dose-response relationships for luteinizing hormone, follicle-
    stimulating hormone, and alpha-subunit release in young vs. older men:
    appraisal with high-specificity immunoradiometric assay and deconvolution
    analysis. Eur J Endocrinol. 135:399–406.
    47. Tenover JS, Matsumoto AM, Clifton DK, Bremner WJ. 1988 Age-related
    alterations in the circadian rhythms of pulsatile luteinizing hormone and
    testosterone secretion in healthy men. J Gerontol. 43:M163-168.
    FASTING AND LH IN YOUNGER VS. OLDER MEN 1975
    [/align:1bgxn4zw][/align:1bgxn4zw][/font][/size[/align]]
    [/quote]
    سو میرے بھائی اب اگر حضور نبی اکرم صلی اللہ علیہ وسلم کے فرمان کے مطابق ہم روزہ کے ذریعے جنسی جذبہ کنٹرول نہیں کر سکتے تو کم از کم سائنسی اصول کو ہی مانتے ہوئے یہ حقیقت تسلیم کرنا پڑے گی کہ روزہ سے جنسی جذبہ کم ضرور ہوتا ہے۔ بشرطیکہ روزہ رکھنے کے تمام آداب و شرائط پورے کیے جائیں۔ یہ ایک الگ موضوع ہے کہ روزہ کے ظاہری اور باطنی آداب و شرائط کیاہیں؟ جب تک کوئی عمل اپنے پورے تقاضوں کے ساتھ نہیں کیا جاتا اس کا نتیجہ بھی کما حقہُ نہیں نکل سکتا۔ ہمیں مان لینا چاہیے کہ اگر فرمان ِ رسول صلی اللہ علیہ وسلم اور سائنسی اصولوں کی وضاحتوں کے باوجود بھی ہم مطلوبہ نتائج نہیں پا سکتے تو یہ قصور ہمارا ہے نہ کہ مسلمانی کا۔ ہمیں چاہیے کہ تصوف کو مطالعہ کریں اسے سیکھیں ۔ ایمان مضبوط کریں قیامت اور آخرت کے کثرت سے یاد رکھیں۔ اسلام و ایمان کو قلب و جان میں اتار لیں۔ جب ہم اللہ اور اسکے رسول صلی اللہ علیہ وسلم کے قائم کردہ معیارِ مسلمانی پر پورا اتریں گے تو پھر ہمیں احکاماتِ اسلامی کے نتائج بھی ملنا شروع ہو جائیں گے اور ہر طرح کے شیطانی اور نفسانی مشکلات سے چھٹکارا بھی مل جائے گا۔
     
  7. سموکر
    آف لائن

    سموکر ممبر

    شمولیت:
    ‏27 مئی 2006
    پیغامات:
    859
    موصول پسندیدگیاں:
    8
    میں نعیم بھائی کے خیالات کی تائید کرتا ہوں واقعی روزہ صرف بھوکے اور پیاسے رہنے کا نام نہیں
     
  8. عقرب
    آف لائن

    عقرب ممبر

    شمولیت:
    ‏14 اکتوبر 2006
    پیغامات:
    3,201
    موصول پسندیدگیاں:
    200
    امریکن بھائی !!
    نعیم بھائی کے دلائل میں وزن ہے۔ ماننا پڑے گا کہ قصور ہمارا ہی ہے۔ اسلام یا اسلامی تعلیمات کا نہیں۔
     
  9. نادیہ خان
    آف لائن

    نادیہ خان ممبر

    شمولیت:
    ‏26 جون 2006
    پیغامات:
    827
    موصول پسندیدگیاں:
    9
    کیا یہ موضوع یہاں بہت ضروری تھا ؟
     
  10. نعیم
    آف لائن

    نعیم مشیر

    شمولیت:
    ‏30 اگست 2006
    پیغامات:
    58,107
    موصول پسندیدگیاں:
    11,153
    ملک کا جھنڈا:
    نادیہ خان جی میں آپ سے اتفاق کرتا ہوں۔ اگر میں اس فورم کا منتظم ہوتا تو شاید اس موضوع کو بلاک کر دیتا۔ لیکن یہ موضوع کچھ ایسا گناہ بھی نہیں۔ ہمیں حسنِ ظن رکھتے ہوئے امریکن بھائی کی نیت پر شک نہیں کرنا چاہیئے ممکن ہے انہوں نےاپنی کسی مشکل پر قابو پانے کے لیے یا اپنے علم میں اضافہ کے لیے اس موضوع پر دوسروں کی رائے طلب کی ہو۔ اگر ہمارے پاس کچھ معلومات اس ضمن میں ہیں تو ہمیں چاہیئے کہ دیانتداری اور خلوص سے انکی حتی المقدور مدد کریں۔ ویسے بھی تبادلہء خیالات کرنے سے علم میں اضافہ ہوتا ہے۔
    البتہ یہ موضوع خواتین کے لیے موزوں نہیں ہے
     
  11. نادیہ خان
    آف لائن

    نادیہ خان ممبر

    شمولیت:
    ‏26 جون 2006
    پیغامات:
    827
    موصول پسندیدگیاں:
    9
    ٹھیک ہے آپ کریں خدمت خلق اللہ حافظ
     
  12. AMERICAN
    آف لائن

    AMERICAN ممبر

    شمولیت:
    ‏13 اکتوبر 2006
    پیغامات:
    9
    موصول پسندیدگیاں:
    1
    سوال کا جواب

    میرے پیارے پیارے بھائی بہت شکریہ کہ تم نے اپنے خیالات سے نوازہ.

    But

    ابھی تک سب لوگوں نے ایک ہی سوال کا جواب دینے میں‌لگے ہوئے ہیں۔ آپ لوگ باقی سوالات کو بھی مدنظر رکھیں۔​
     
  13. AMERICAN
    آف لائن

    AMERICAN ممبر

    شمولیت:
    ‏13 اکتوبر 2006
    پیغامات:
    9
    موصول پسندیدگیاں:
    1
    میں اپنے سوالات دوبارہ دہرا رہا ہ

    میں اپنے سوالات کو دوبارہ دہرا رہا ہوں۔ برائے مہربانی ان سوالات پر غور کرنے کے بعد ان کا جواب دیجئے گا۔

    اس طاقت یا جذبہ کے ذریعے جسمانی طاقت پیدا ہوتی ہے۔یہ جنسی طاقت کیسے پیدا ہوتی ہے؟
    یہ کیسے ایک بندے کے اندر ذہنی ارتکاز۔ یکسوئی پیدا کرتی ہے۔اس جذبہ کے ذریعے ذہنی ارتکاز کیسےممکن ہوتا ہے؟
    یہ کیسے ممکن ہے کہ ایک بندہ اپنے جنسی جذبہ کو کم از کم دو ماہ تک کنٹرول کر سکے؟
     
  14. نعیم
    آف لائن

    نعیم مشیر

    شمولیت:
    ‏30 اگست 2006
    پیغامات:
    58,107
    موصول پسندیدگیاں:
    11,153
    ملک کا جھنڈا:
    آپ کے ذہن میں صرف ایک پریشانی کیوں سما گئی ہے؟؟؟
    آپ کو اچھی طرح معلوم ہے کہ اس فورم میں بحمداللہ تعالیٰ سب مسلمان ہیں ۔اورہم روشن خیال ہونے کے باوجود کچھ الفاظ، کچھ اصطلاحات، اور کچھ موضوعات اخلاقی حدود و قیود کی وجہ سے اس طرح سرٍ عام زیرٍ بحث نہیں لا سکتے اسکے علاوہ یہ بات بھی نہیں بھولنی چاہییے کہ یہ فورم خواتین کے لیے بھی ہے ۔
    امریکن بھائی ! براہ کرم ناراض نہ ہونا لیکن مجھے بتائیں کہ کیا دنیا بھر کی میڈیکل سائنس اور ریسرچ صرف جنسی جذبہ کے گرد ہی گھومتی ہے؟ کیا دنیا بھر میں اسکے علاوہ اور کوئی مسئلہ نہیں رہا؟ یا آپ کی زندگی میں اسکے علاوہ اور کوئی مسئلہ نہیں ہے؟
    ہم سب آخر تھوڑی سی فکرباقی زندگی کی کیوں نہیں کر سکتے؟ہم کیوں نہیں پوچھ سکتے ہیں کہ :
    شادی کے لیے بہترین عمر کیا ہے؟
    انسان کو شادی کب کر لینی چاہیے؟
    شادی کے بعد میاں بیوی کے حقوق فرائض ، اسلام میں کیا ہیں؟ بحثیت مسلمان ہمیں کیسے زندگی گذارنی چاہییے؟
    معاف کیجیے گا آپ کے سوالات میں سوالات کم اور چسکہ بازی زیادہ ہے۔ آپ کو صرف جنسی جذبہ پیدا ہونےکے عوامل میں ہی تجسس کیوں ہے؟
    انسان کے اندر بے شمار دوسرے جذبات بھی تو ہیں؟ آپ انکی فکر کیوں‌نہیں کرتے؟
    یہ سوالات آپکے ذہن میں پیدا کیوں نہیں ہوتے کہ :
    ہماری زندگی کا مقصد کیا ہے؟ جانور اور انسان کی زندگی میں کیا فرق ہے؟ اگر صرف سانس لینا، کھانا پینا، بچے پیدا کرنا ہی زندگی ہے تو جانوروں کے مقابلے میں انسان کو اشرف المخلوقات کیوں بنایا گیا؟
    ہم مسلمان سچے دین پر ہونے کے باوجود دنیا میں ذلیل و خوار کیوں ہیں؟
    مرنے کے بعد انسان کیسے حساب کتاب دے گا؟
    کون کون سے اعمال قبر میں کام آ سکتے ہیں؟ قیامت کے دن کے حالات کیا ہوں گے؟ انسان کے اعضاء روزٍ محشر کیسے انسان کے اعمال کی گواہی دیں گے وغیرہ وغیرہ؟ کبھی یہ بھی سوچا یا سوچنے کی کوشش کی؟‌

    ‌امریکن بھائی !
    آپ کو اس موضوع پر اتنی ہی معلومات درکار ہیں تو دنیا میں سینکڑوں کتابیں اس موضوع پر موجود ہیں۔ آپ آن لائن بھی درجنوں لنکس اور سائٹس کے ذریعے اپنی معلومات میں اضافہ کر سکتے ہیں۔ مثال کے طور پر http://sexuality.about.com/od/sexualhealthqanda یا اور اسطرح کے کئی لنک آپ کو Search Engine سے مل سکتے ہیں۔
    میں امید کرتا ہوں کہ آپ میری باتوں پر ٹھنڈے دل سے غور کرنے کے بعد فراغ دلی کا مظاہرہ کرتے ہوئے خود بھی اور دیگر لوگوں کو بھی اس بحث میں الجھا کر وقت ضائع کرنے کی بجائے اس فورم کو مثبت طریقے سے استعمال کریں گے۔ شکریہ
     
  15. حماد
    آف لائن

    حماد منتظم اعلیٰ سٹاف ممبر

    شمولیت:
    ‏13 مئی 2006
    پیغامات:
    402
    موصول پسندیدگیاں:
    95
    ملک کا جھنڈا:
    نعیم بھائی کے اس تسلی بخش جواب کے بعد اس حساس موضوع کو مزید بگڑنے سے بچانے کے لئے یہیں مقفل کیا جا رہا ہے۔ امید ہے کہ تمام صارفین تعاون فرمائیں گے۔ شکریہ
     
موضوع کا سٹیٹس:
مزید جوابات پوسٹ نہیں کیے جا سکتے ہیں۔

اس صفحے کو مشتہر کریں